A local representation formula for quaternionic slice regular functions

نویسندگان

چکیده

After their introduction in 2006, quaternionic slice regular functions have mostly been studied over domains that are symmetric with respect to the real axis. This choice was motivated by some foundational results published 2009, such as Representation Formula for axially domains. The present work studies not symmetric, partly correcting hypotheses of previously results. In particular, this includes a Local valid without symmetry hypothesis. Moreover, it determines class domains, called simple, having following property: every function on simple domain can be uniquely extended completion its domain.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extension results for slice regular functions of a quaternionic variable

In this paper we prove a new representation formula for slice regular functions, which shows that the value of a slice regular function f at a point q = x + yI can be recovered by the values of f at the points q + yJ and q + yK for any choice of imaginary units I, J,K. This result allows us to extend the known properties of slice regular functions defined on balls centered on the real axis to a...

متن کامل

Poles of regular quaternionic functions

This paper studies the singularities of Cullen-regular functions of one quaternionic variable, as defined in [7]. The quaternionic Laurent series prove to be Cullen-regular. The singularities of Cullenregular functions are thus classified as removable, essential or poles. The quaternionic analogues of meromorphic complex functions, called semiregular functions, turn out to be quotients of Culle...

متن کامل

A Cauchy kernel for slice regular functions

In this paper we show how to construct a regular, non commutative Cauchy kernel for slice regular quaternionic functions. We prove an (algebraic) representation formula for such functions, which leads to a new Cauchy formula. We find the expression of the derivatives of a regular function in terms of the powers of the Cauchy kernel, and we present several other consequent results. AMS Classific...

متن کامل

The open mapping theorem for regular quaternionic functions

The basic results of a new theory of regular functions of a quaternionic variable have been recently stated, following an idea of Cullen. In this paper we prove the minimum modulus principle and the open mapping theorem for regular functions. The proofs involve some peculiar geometric properties of such functions which are of independent interest.

متن کامل

A Phragmén - Lindelöf principle for slice regular functions

The celebrated 100-year old Phragmén-Lindelöf theorem, [15, 16], is a far reaching extension of the maximum modulus theorem for holomorphic functions that in its simplest form can be stated as follows: Theorem 1.1. Let Ω ⊂ C be a simply connected domain whose boundary contains the point at infinity. If f is a bounded holomorphic function on Ω and lim supz→z0 |f(z)| ≤ M at each finite boundary p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2021

ISSN: ['2330-1511']

DOI: https://doi.org/10.1090/proc/15339